Increasing volumes of troubling media reports about our nation’s crumbling water infrastructure are an urgent reminder that a great deal of water systems in the U.S. were built decades if not a hundred years ago or more. These systems are nearing the end of their life spans and must be fixed. Modernizing these systems will be costly and time consuming, which is why it is important that the best choices are available to engineers when considering what materials to use in infrastructure projects. A proven option for updating our water systems is the use of plastic pipes, which have been shown to be cost-effective and durable.

Proven Durability
- Plastic pipes meet numerous ASTM, AWWA, and NSF standards for durability
- Evidence shows the **life span of plastic pipes can exceed 100 years**[^1][^2][^3], while legacy materials begin to corrode and break as quickly as 11-14 years[^3]
- Unlike legacy materials, plastic pipes are **resistant to corrosion that costs taxpayers $50.7 billion annually**[^4]

Maximize Efficiency
- Plastic pipes, because they do not corrode, require less energy for water transport
- Installation of plastic pipe is faster and **saves on energy and manpower** increasing savings in time, energy, and costs
- There are significant energy savings in the manufacturing and transportation of plastic pipes[^5]

Protect Health
- Plastic pipes meet EPA requirements for clean water by **adhering to NSF/ANSI Standard 61, Drinking Water System Components – Health Effects**