Chemistry is transforming waste into a valuable energy resource through advanced energy recovery technologies. Recovering this abundant energy complements recycling and reduces waste that would otherwise be sent to landfills. Although traditional recycling rates in the U.S. are growing and must continue to do so, tons of high energy-content products, like non-recycled plastics and other materials, are buried in landfills every day – wasting a valuable energy source. Modern energy recovery facilities can process waste with fewer emissions than conventional fuels processed in most power plants, while innovative plastics-to-fuel technologies convert plastics into alternative fuels.

Modify the definition of “solid waste” to expressly exclude materials (including at least secondary plastic materials) that are used as feedstocks to produce fuels or petroleum derivatives.

Modify the existing regulatory framework to clearly distinguish between materials pyrolyzed into fuel or petroleum derivatives in a plastics-to-fuel or conversion facility and materials combusted to create energy at a waste-to-energy facility.

Update the regulatory framework to recognize that plastics-to-fuel and conversion facilities process a “feedstock,” not a “waste.”

Recycling
Massachusetts recycles approximately 2,152,212 tons of municipal solid waste each year

Energy Recovery
Energy recovery of non-recycled municipal solid waste in Massachusetts could provide enough fuel to power
56,000 cars each year
86,000 homes each year

Converting non-recycled plastics to fuel in Massachusetts could provide enough fuel to power

UPDATE MASSACHUSETTS’ STATE POLICY TO:

chemistrytoenergy.com/energy-recovery