ethylene oxide
third edition
Legal Notice

The Ethylene Oxide Product Stewardship Guidance Manual was prepared by the American Chemistry Council's Ethylene Oxide/Ethylene Glycols Panel (Panel). It is intended to provide general information to persons who may handle or store ethylene oxide. It is not intended to serve as a substitute for in-depth training or specific handling or storage requirements, nor is it designed or intended to define or create legal rights or obligations. It is not intended to be a "how-to" manual, nor is it a prescriptive guide. All persons involved in handling and storing ethylene oxide have an independent obligation to ascertain that their actions are in compliance with current federal, state and local laws and regulations and should consult with legal counsel concerning such matters. The manual is necessarily general in nature and individual companies may vary their approach with respect to particular practices based on specific factual circumstance, the practicality and effectiveness of particular actions and economic and technological feasibility. Any mention of specific products in this manual is for illustration purposes only and is not intended as a recommendation or endorsement of such products.

Neither the American Chemistry Council, nor the individual member companies of the Ethylene Oxide/Ethylene Glycols Panel, nor any of their respective directors, officers, employees, subcontractors, consultants, or other assigns, makes any warranty or representation, either express or implied, with respect to the accuracy or completeness of the information contained in this manual; nor do the American Chemistry Council or any member companies assume any liability or responsibility for any use or misuse, or the results of such use or misuse, of any information, procedure, conclusion, opinion, product, or process disclosed in this manual. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

This work is protected by copyright. Users are granted a nonexclusive royalty-free license to reproduce and distribute this Manual, subject to the following limitations: (1) the work must be reproduced in its entirety, without alterations; and (2) copies of the work may not be sold.

For more information on material presented in this manual, please contact your supplier.

Copyright © May 2007
ethylenoxide
third edition
To the Reader

Manual Preparation

As members and affiliated companies of the American Chemistry Council, we support efforts to improve the industry’s responsible management of chemicals. To assist in this effort, the American Chemistry Council’s Ethylene Oxide/Ethylene Glycols Panel supported the creation and publication of this manual. The Panel is comprised of the following companies:

Balchem Corporation/ARC Specialty Products
BASF Corporation
Bayer Material Science LLC
Celanese Ltd.
Champion Technologies
Croda, Inc.
The Dow Chemical Company
Eastman Chemical Company
Honeywell
Shell Chemical LP

The development of this manual was led by the Panel’s Ethylene Oxide Safety Task Group (EOSTG), a group comprised of producers and users of ethylene oxide. The EOSTG functions to generate, collect, evaluate and share information to support product stewardship with regard to ethylene oxide. The EOSTG formed a manual work group, chaired by Keith Vogel of Lyondell Chemical Company, to lead the development of this document. The following work group members provided significant contributions:

Tom Grumbles, Sasol North America
Susan Jackson, BASF Corporation
Robert Lenahan, Bayer MaterialScience LLC
Denis Reeser, The Dow Chemical Company
John Stewart, BASF Corporation
Don Szczepanski, Huntsman Petrochemical Corporation
David Townsend, Celanese Chemicals Ltd.
Randy Viscomi, Balchem Corporation/ARC Specialty Products
Keith Vogel, Lyondell Chemical Company
Mike Wagner, Old World Industries
John Wincek, Croda, Inc.
Gerald Wise, Shell Chemical LP

Acknowledgements

Many others contributed to the development and editing of this manual, all of whom cannot be listed here; however, the manual work group would like to thank the following individuals for their significant contributions to this publication:

Ralph Gingell, Shell Chemical LP
William Gulledge, American Chemistry Council
Karl Loos, Shell Chemical LP
David McCready, The Dow Chemical Company
Kristy Morrison, EO STG Manager, American Chemistry Council
Karyn Schmidt, Assistant General Counsel, American Chemistry Council
Table of Contents

1.0 Introduction
 - 1.1 Purpose and Use of Manual

2.0 Properties of Ethylene Oxide
 - 2.1 Introduction
 - 2.2 Physical Properties
 - 2.3 Reactive and Combustive Properties
 - 2.4 Commercial Chemistry
 - 2.5 Uses of Ethylene Oxide

3.0 Health Effects of Ethylene Oxide
 - 3.1 Introduction
 - 3.2 Acute Inhalation Exposure
 - 3.3 Skin and Eye Contact
 - 3.4 Chronic Exposure Hazards

4.0 Environmental Effects of Ethylene Oxide
 - 4.1 Introduction
 - 4.2 Properties in the Environment
 - 4.3 Ecotoxicological Effects
 - 4.4 Environmental Evaluation of Ethylene Oxide Spills
 - 4.5 Fugitive Emissions

5.0 Hazards of Ethylene Oxide
 - 5.1 Introduction
 - 5.2 Contamination Incidents
 - 5.3 Formation of Ethylene Oxide Vapor Clouds
 - 5.4 Ethylene Oxide Decomposition Incidents
 - 5.5 Ethylene Oxide Transportation Incidents
 - 5.6 Runaway Ethylene Oxide Polymerization Incidents
 - 5.7 Runaway Reactions in Ethoxylation Units
 - 5.8 Incidents in Ethylene Oxide Abatement Devices

6.0 Design of Facilities
 - 6.1 Introduction
 - 6.2 Plant Layout and Siting
 - 6.3 Materials of Construction
 - 6.4 Unloading Facilities – Bulk Receipt of EO
 - 6.5 EO Storage
 - 6.6 Reaction Systems
 - 6.7 Piping and Pumps
 - 6.8 Handling of Vents and Effluent
 - 6.9 Miscellaneous

7.0 Personnel Exposure
 - 7.1 Introduction
 - 7.2 OSHA Standard for Ethylene Oxide
 - 7.3 Other Exposure Standards/Recommendations for Ethylene Oxide
 - 7.4 Measuring Exposure
 - 7.5 Personal Protective Equipment

8.0 Equipment Preparation and Maintenance
 - 8.1 Introduction
 - 8.2 Preparation for Inspection or Maintenance
 - 8.3 Preparation of Internal Surfaces
 - 8.4 Leak Repair Clamps
 - 8.5 Preventive Maintenance
 - 8.6 Equipment Commissioning

9.0 Transportation and Unloading Operations
 - 9.1 Introduction
 - 9.2 Emergency Response Telephone Numbers
 - 9.3 Ethylene Oxide Classification
9.4 Railcars 85
9.5 IM Portable Tanks
 (Intermodal/Iso-Containers) . . 94
9.6 Non-Bulk Packaging for
 High Purity Ethylene Oxide . . 94
9.7 Ethylene Oxide Shipping
 Data ... 98
9.8 Shipments of Ethylene Oxide
 between the U.S. and
 Canada. 98

10.0 Emergency Response 100
 10.1 Introduction 100
 10.2 Potential Hazards 100
 10.3 Fire Response 101
 10.4 Spill Response 102
 10.5 Emergency Response to
 Temperature Rise 102
 10.6 Emergency Response Plan
 to Temperature Rise 103
 10.7 Use of Water in
 Emergencies 104

11.0 Selected Regulations 105
 11.1 Introduction 105
 11.2 Regulations — Numerical
 with Subject Listed 105

Appendix A
 Figures and Tables118

Appendix B
 Laboratory Compatibility
 Testing of Elastomers with
 Ethylene Oxide. 137

Appendix C
 Railcar Repressurization141

Appendix D
 References 145

Appendix E
 Glossary of Selected
 Terms, Abbreviations and
 Organizations151
Figures

Figure 2.1 The Ethylene Oxide Molecule 2
Figure 2.2 Flammable Region of Ethylene Oxide/Nitrogen/Air Mixtures 7
Figure 2.3 Flammable Region of Ethylene Oxide/Carbon Dioxide/Air Mixtures 7
Figure 2.4 Effects of Pressure on Flammable Region of Ethylene Oxide/Nitrogen/Air Mixtures 8
Figure 2.5 Ethylene Oxide Polymer Instantaneous Drop-Out Temperatures 13
Figure 2.6 Ethylene Oxide Polymer Drop-Out Temperatures after 4 Days 14
Figure 4.1 Neutral EO/Water/Glycol Kinetics - Isothermal Case, Initially EO/Water mixture . 19
Figure 4.2 Neutral EO/Water/Glycol Kinetics - Adiabatic Case, Initially EO/Water 19
Figure 5.1 Older View of Plant Before Explosion Showing EO Tanks in Foreground 23
Figure 5.2 Blast Center after Explosion – EO Vessels No Longer Visible 23
Figure 5.3 Aerial View of the Plant Showing Overall Damage ... 24
Figure 5.4 EO Tank Blown Into Process Structure 400 Feet Away ... 24
Figure 5.5 Plant Laboratory After EO Vapor Cloud Explosion, 300 Feet Away from Explosion Center 25
Figure 5.6 Remnants of Railcar 25
Figure 5.7 Remnants of Railcar 25
Figure 5.8 Damage to Other Railcars from Ethylene Oxide Railcar Explosion 25
Figure 5.9 Remnants of Railcar (after EO explosion caused by contamination with ammonia) 26
Figure 5.10 High Speed Centrifugal Pump “Launched” by Decomposition of 0.6 Pounds of Ethylene Oxide 29
Figure 5.11 Motor Landed on Operating Ethylene Oxide Pump Discharge Line 29
Figure 5.12 Ethylene Oxide Distillation Column Reboiler after Explosion 30
Figure 5.13 Aerial View of Ethylene Oxide Plant after Explosion ... 31
Figure 5.14 Remnants of Base of Ethylene Oxide Distillation Column after Explosion 31
Figure 5.15 Piece of Ethylene Oxide Distillation Column Wall Turned Inside Out by Explosion 32
Figure 5.16 Aerial View of EO Unit After Explosion 33
Figure 5.17 EO Plant Burning after Explosion 33
Figure 5.18 EO Purification After Explosion – Two Towers are Missing 34
Figure 5.19 Ethylene Oxide Re-distillation Tower Explosion 34
Figure 5.20 Resulting Damage to the Plant 34
Figure 5.21 Filter Case after Runaway Polymerization 36
Figure 5.22 Filter Case after Runaway Polymerization 36
Figure 5.23 Filter Case after Runaway Polymerization 36
Figure 5.24 Diagram of Sterilizer Explosion 37
Figure 5.25 Sterilizer Explosion Damage 38
<p>| Figure 5.26 | Sterilization Chamber Damage | Figure 6.11 | Example of Severely Degraded O-ring in High Temperature EO-water Service (Chemraz® 505). |
| Figure 5.27 | Damage to the building wall from impact of sterilizer door | Figure 6.12 | Example of Flange Seal Band with Leak Detection Drip Tube |
| Figure 6.1 | Degradation of Compressed Asbestos Valve Bonnet Gaskets by Ethylene Oxide | Figure 6.13 | EO Unloading Facilities |
| Figure 6.2 | PTFE Gasket Failures in EO Service Due to Cold Flow | Figure 6.14 | Representative layout of Ethylene Oxide unloading facilities – Pressurized transfer |
| Figure 6.3 | Glass Filled PTFE Gasket Failure Due to EO Polymerization in PTFE-Glass Matrix | Figure 6.15 | Representative layout of Ethylene Oxide unloading facilities – Pump transfer |
| Figure 6.4a | Deformation of a Spiral Wound Stainless Steel-PTFE Gasket Due to EO Permeation and Polymerization | Figure 6.16 | Total pressure required to inert vapor above Ethylene Oxide with nitrogen diluent |
| Figure 6.4b | Deformation of a Spiral Wound Stainless Steel-PTFE Gasket | Figure 6.17 | EO Decomposable Limits versus Molar Nitrogen Concentration |
| Figure 6.5 | Spiral Wound Gasket with Stainless Steel Windings, Flexible Compressed Graphite Filler, and Inner and Outer Retaining Rings | Figure 6.18 | Decomposition Limit of Mole % EO versus Total System Pressure |
| Figure 6.6 | Gasket Test Showing Failure of Compressed Graphite Gasket, Laminated on Flat Stainless Steel Sheet with an Adhesive | Figure 6.19 | Ethylene Oxide Vent Scrubber System |
| Figure 6.7 | Laminated Gasket Made of Polycarbon Sigraflex™ BTCSS Flexible Compressed Graphite – Laminated on Stainless Steel Tang Sheet | Figure 6.20 | Schematic of Typical Flaring System |
| Figure 6.8 | Laminated Gasket Made of UCAR Grafoil GH™ E Flexible Compressed Graphite – Laminated on Stainless Steel Tang Sheet | Figure 6.21 | EO Sampling System |
| Figure 6.9 | Butyl Rubber O-Ring Before and After Exposure to EO for 30 days | Figure 7.1 | OSHA Warning for EO Regulated Areas |
| Figure 6.10 | Example of Degraded O-ring Attacked by EO | Figure 7.2 | Chemical Burn Resulting from Low Concentration of EO in Water |
| Figure 6.11 | Example of Severely Degraded O-ring in High Temperature EO-water Service (Chemraz® 505) | Figure 9.1 | DOT 105-J railcar for transporting Ethylene Oxide |
| Figure 6.12 | Example of Flange Seal Band with Leak Detection Drip Tube | Figure 9.2 | Dome Arrangement of a DOT 105-J Railcar for Ethylene Oxide Service |
| Figure 6.13 | EO Unloading Facilities | Figure 9.3 | DOT "Stop—Tank Car Connected" Sign |
| Figure 6.14 | Representative layout of Ethylene Oxide unloading facilities – Pressurized transfer | Figure 9.4 | Canister Mask with Ethylene Oxide-Specific Canister |</p>
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>Positive Pressure “Hoseline” Type Respirator</td>
<td>90</td>
</tr>
<tr>
<td>9.6</td>
<td>Commonly Used Non-bulk Containers</td>
<td>95</td>
</tr>
<tr>
<td>9.7</td>
<td>Typical Drum Connections</td>
<td>96</td>
</tr>
<tr>
<td>10.1</td>
<td>Ethylene Oxide / Water (Neutral) Reaction Temperature Profile</td>
<td>103</td>
</tr>
<tr>
<td>1</td>
<td>Ethylene Oxide Liquid Density</td>
<td>118</td>
</tr>
<tr>
<td>2</td>
<td>Ethylene Oxide Vapor Pressure</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>Ethylene Oxide Liquid Heat Capacity</td>
<td>119</td>
</tr>
<tr>
<td>4</td>
<td>Ethylene Oxide Liquid Viscosity</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>Ethylene Oxide Liquid Thermal Conductivity</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>Ethylene Oxide Heat of Vaporization</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>Ethylene Oxide Vapor Heat Capacity</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>Ethylene Oxide Vapor Viscosity</td>
<td>121</td>
</tr>
<tr>
<td>9</td>
<td>Ethylene Oxide Vapor Thermal Conductivity</td>
<td>122</td>
</tr>
<tr>
<td>10</td>
<td>Freezing Points Ethylene Oxide/Water Mixtures</td>
<td>122</td>
</tr>
<tr>
<td>11</td>
<td>C_p/C_v For Saturated Ethylene Oxide Vapor</td>
<td>123</td>
</tr>
<tr>
<td>12</td>
<td>Ethylene Oxide Vapor Density</td>
<td>123</td>
</tr>
<tr>
<td>13</td>
<td>Ethylene Oxide Coefficient of Cubic Expansion</td>
<td>124</td>
</tr>
<tr>
<td>14</td>
<td>Raoult's Law Deviation Factors for Ethylene Oxide/ Water Mixtures</td>
<td>126</td>
</tr>
<tr>
<td>15</td>
<td>Raoult's Law Deviation Factors for Ethylene Oxide/ Water Mixtures</td>
<td>127</td>
</tr>
<tr>
<td>16</td>
<td>Flammability Data on EO-Air Mixtures at Subatmospheric Pressures</td>
<td>128</td>
</tr>
<tr>
<td>17</td>
<td>Vapor/Liquid Equilibria of Ethylene Oxide/Water Systems</td>
<td>129</td>
</tr>
<tr>
<td>18</td>
<td>Density vs. Composition of Ethylene Oxide/Water Systems</td>
<td>130</td>
</tr>
<tr>
<td>19</td>
<td>Boiling points of aqueous EO concentrations</td>
<td>131</td>
</tr>
<tr>
<td>20</td>
<td>Decomposition Data</td>
<td>132</td>
</tr>
<tr>
<td>21</td>
<td>Vapor Compressibility vs. Pressure as a Function of Temperature</td>
<td>133</td>
</tr>
<tr>
<td>B1</td>
<td>Weight Change of O-rings Exposed to EO at 27°C</td>
<td>138</td>
</tr>
<tr>
<td>B2</td>
<td>Volume Change of O-rings Exposed to EO at 27°C</td>
<td>138</td>
</tr>
<tr>
<td>B3</td>
<td>Tensile Strength of O-rings Exposed to EO at 27°C</td>
<td>140</td>
</tr>
<tr>
<td>B4</td>
<td>Maximum Deformation of O-rings Exposed to EO at 27°C</td>
<td>140</td>
</tr>
<tr>
<td>C1</td>
<td>Unloaded Railcar Repressuring — Nitrogen — Less than 50 Gallon EO Heel</td>
<td>142</td>
</tr>
<tr>
<td>C2</td>
<td>Unloaded Railcar Repressuring — Vapor Balancing — Less than 50 Gallon Heel</td>
<td>144</td>
</tr>
</tbody>
</table>
Table of Contents

Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Physical Properties of Ethylene Oxide</td>
<td>3</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Physical Properties of Aqueous Ethylene Oxide Solutions</td>
<td>5</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Heat of Reaction of Various Ethylene Oxide Reactions at 25°C</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Physical Properties of Ethylene Oxide Polymer</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Solubility* of Ethylene Oxide Polymer in Various Solvents</td>
<td>13</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Carcinogenicity Classifications of Ethylene Oxide</td>
<td>17</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Findings of the NIOSH Ethylene Oxide Studies</td>
<td>17</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Environmentally Relevant Parameters of Ethylene Oxide</td>
<td>18</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Biological Degradation Data for Ethylene Oxide</td>
<td>20</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Aquatic Toxicity Data for Ethylene Oxide*</td>
<td>21</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>EO Pump Shutdown and Alarm Considerations</td>
<td>62</td>
</tr>
<tr>
<td>Table 7.1</td>
<td>AEGL Values for Ethylene Oxide [ppm (mg/m3)]</td>
<td>69</td>
</tr>
<tr>
<td>Table 7.2</td>
<td>OSHA Minimum Standards for Respiratory Protection for Airborne Ethylene Oxide</td>
<td>72</td>
</tr>
<tr>
<td>Table 7.3</td>
<td>Ethylene Oxide Permeation Data for Clothing</td>
<td>73</td>
</tr>
<tr>
<td>Table 7.4</td>
<td>Ethylene Oxide Permeation Data for Gloves</td>
<td>79</td>
</tr>
<tr>
<td>Table 7.5</td>
<td>Ethylene Oxide Permeation Data for Boots</td>
<td>81</td>
</tr>
<tr>
<td>Table 7.6</td>
<td>Illustration – Pressuring Unloaded Railcars with Pure Nitrogen (Assuming 50 Gallon Ethylene Oxide Liquid Heel)</td>
<td>93</td>
</tr>
<tr>
<td>Table 7.7</td>
<td>Illustration – Repressuring Unloaded Railcars – Vapor Balancing (50 Gallon Ethylene Oxide Liquid Heel)</td>
<td>94</td>
</tr>
<tr>
<td>Table 7.8</td>
<td>Temperature/Density/Vapor Pressure for Shipping Ethylene Oxide</td>
<td>98</td>
</tr>
<tr>
<td>Table A1</td>
<td>Physical Property Equations</td>
<td>134</td>
</tr>
<tr>
<td>Table A2</td>
<td>Conversion Factors</td>
<td>134</td>
</tr>
<tr>
<td>Table A3</td>
<td>Henry's Law Constants (Atm/mole fraction)</td>
<td>135</td>
</tr>
<tr>
<td>Table A4</td>
<td>Henry's Law Constants (MPa/mole fraction)</td>
<td>135</td>
</tr>
<tr>
<td>Table B1</td>
<td>O-Rings Selected for Compatibility Testing</td>
<td>137</td>
</tr>
</tbody>
</table>
Appendix C Railcar Repressurization

This Appendix C contains additional discussion on considerations for pressurizing EO Railcars supplementing the primary discussion in Chapter 9.

Follow federal regulatory requirements and criteria EO supplier guidelines for pressurizing railcars. Chapter 9 of this Manual and this supplemental discussion offer additional considerations for pressurization.

The guidelines discussed here are intended to maintain an inert atmosphere within the railcar up to a temperature of 105°F (DOT requirement), while maintaining the railcar pressure below the setpoint of the pressure safety valve.

Note that the use of Figure 6.16 is inappropriate for pressurizing railcars in EO service as the temperature in the railcar changes in transit. That particular Figure applies to EO storage facilities where either storage temperature and/or pressure can be continuously monitored and controlled to maintain the vapor space in the inert, non-decomposable region.

- Railcars utilized for the transportation of bulk quantities of EO must be pressurized with an inert gas to maintain the vapor contents in a safe, non-combustible, non-decomposable state up to a temperature of 105°F (41°C). This is a requirement specified by the US Department of Transportation as found in 49 CFR, Chapter 1, Part 173.323(f). To provide an inert vapor space in an EO railcar, either (a) pure nitrogen or (b) storage tank vapors composed primarily of nitrogen (from an unloading practice typically referred to as vapor balancing) are most often used.

- The requirement for maintaining an inert, non-combustible, non-decomposable vapor space applies to both “full” and “unloaded” EO railcars. An unloaded railcar contains residual amounts of EO liquid that cannot be completely discharged into a receiving storage tank or vessel. Consequently, a potentially hazardous condition could be created if the railcar vapor space is not properly inerted.

- Railcars used for the transportation of bulk quantities of EO are designed to leave minimal volumes of residual liquid (e.g., < 50 gallons) after the cargo is discharged. This assumes many factors, such as (a) the railcar internals are in good repair; (b) the rail siding is level, thereby not allowing an accumulation of liquid (“ponding”) at either end of the railcar; and (c) the cargo is unloaded to the maximum extent possible (e.g., not terminating the discharge of EO from the railcar before the unloading pump loses suction, or before nitrogen begins to blow through the liquid unloading line). The railcar pressurization information provided in Chapter 9 and this Appendix C is intended only for those situations where no more than 50 gallons of liquid EO remain in the railcar following unloading.

- The gas selected to provide an inert atmosphere within the vapor space of the railcar must not be reactive with EO, or contain any contaminants that might be reactive with EO. The availability and inertness of nitrogen mean that it is frequently used for pressurizing railcars to provide a non-combustible, non-decomposable vapor space. Nitrogen can be used as (a) pure gas, or (b) the major component of displaced vapors from an EO storage tank. Contact your EO supplier if a gas other than nitrogen is to be used to inert an EO railcar.

- While sufficient pressure must be applied to render the vapor space inert up to 105°F, applying an excessive level of pressure could result in the railcar safety valve relieving at temperatures below 105°F, releasing EO vapors into the environment and depleting the inventory of nitrogen in the railcar. The temperature and pressure of a railcar are not constant and are influenced by many factors such as sun exposure and ambient air temperature. As a railcar increases in temperature, additional EO from any remaining liquid heel will evaporate, increasing both the concentration of EO in the vapor space and the pressure within the railcar. The ranges of pressures outlined in Chapter 9 have been established to provide for:
 - an inert, non-combustible, non-decomposable vapor space up to 105°F, and
 - remaining at or below the 75 psig safety valve set pressure at 105°F.
Nitrogen Padding

Pure nitrogen is frequently used both to (a) pressure out liquid EO from railcars into storage vessels, and (b) pressurize the unloaded railcar for the return trip to the EO supplier.

The composition of the railcar vapor space, and accompanying temperature and pressure, determine whether the vapor space is inert and non-decomposable. The composition of the vapor space is influenced by the volume of the EO heel remaining in the railcar, and the nitrogen pressure applied to the railcar after unloading. Generally speaking, the larger the quantity of liquid EO heel, the greater the quantity of EO that can evaporate within the railcar. If an insufficient volume of nitrogen is injected into the railcar (using pressure as an indirect measure of nitrogen volume), the vapor space may not remain inert as additional EO evaporates from the remaining liquid heel. Conversely, injecting too much nitrogen upon initial pressurization could lead to a later discharge from the pressure safety valve.

Although pure nitrogen may be injected into the railcar during or immediately after unloading, some EO will evaporate into the vapor space during the time interval required to discharge the contents of the railcar. As a consequence, immediately after the railcar is unloaded, repressured, and secured for return to the supplier, the vapor space will also contain some finite quantity of EO in addition to the nitrogen that was injected into the railcar. How much EO evaporates into the vapor space during the unloading process is dependent on both the length of time required to unload the railcar, and the temperature of the railcar.

• The minimum pressure levels illustrated in the section of Chapter 9 titled “Inerting the Unloaded Railcar for Return” accommodate the evaporation of EO into the nitrogen during the unloading and repressuring process. The Table provided assumes that at the completion of the unloading process, the partial pressure of the EO in the vapor space is no less than 21% of the vapor pressure of EO at the temperature of the railcar.

• The minimum repressure levels discussed within these guidelines are intended to account for:
 (a) possible errors in the measured railcar temperatures and pressures, and
 (b) uncertainties in the predicted physical and chemical characteristics of EO used to develop these guidelines.
Appendix C Railcar Repressurization

Vapor Balancing

This discussion assumes the EO tank from which the balancing vapors originate is padded with nitrogen. Contact your EO supplier if vapor balancing is utilized, and nitrogen is not used as the inerting gas for the EO storage vessel.

Unloading EO from railcars into storage facilities using vapor balancing is frequently practiced. EO that is unloaded and directed into a tank or receiving vessel displaces vapor from that storage vessel. This same vapor is then redirected back to the railcar.

Unlike the nitrogen vapors that result from pressuring unloaded EO railcars with pure nitrogen, the vapors displaced and originating from EO storage tanks are mixtures of nitrogen and EO. Higher EO storage tank temperatures will result in a higher percentage of EO and a lower quantity of nitrogen in the tank vapors. As a consequence, determining the appropriate level of pressurization for empty railcars when utilizing vapor balancing is a more complex process.

Depending on the temperature of the railcar, and the composition of the vapors displaced from the receiving storage tank into the railcar, some additional EO could evaporate into the vapor space during the unloading process. How much, if any, additional EO evaporates into the railcar vapor space is directly influenced by (a) the composition of the blanketing vapor displaced from storage tankage, (b) the temperature of the railcar, and (c) duration of time required to unload the railcar.

The minimum pressure levels illustrated in Chapter 9 are intended to accommodate the potential for additional EO to enter the vapor space of the railcar during the unloading and repressuring process. The illustrations assume that immediately after the railcar is unloaded, repressured, and secured for return to the supplier, the vapor space of the railcar has an EO content corresponding to either (a) the composition of the vapors balancing vapors displaced from the EO storage vessel, or (b) a composition corresponding to an EO partial pressure of no less than 21% of the vapor pressure of EO at the temperature of the railcar, whichever of the two represents the greater concentration of EO.

The minimum repressure levels within the guidelines is intended to account for:

(a) Possible errors in the measured railcar/storage tank temperatures and pressures, and

(b) Uncertainties in the predicted physical and chemical characteristics of EO utilized in the development of these guidelines.

The illustrations in Chapter 9 set out examples of minimum and maximum repressure levels for an unloaded railcar when using vapor balancing. These illustrations are applicable only for circumstances where an initial EO heel exists of no greater than 50 gallons. The following Figure C2 is a graphical representation.
Figure C2 Unloaded Railcar Repressuring — Vapor Balancing — Less than 50 Gallon Heel